

LSC

Author:

J. Thomson and D. A. Burns

PerkinElmer, Inc.

Downers Grove, IL

Environmental Sample Preparation for LSC

Introduction

The advance of the nuclear industry in all its forms coupled with growing concerns for

possible environmental contamination has led to an increased interest in the quantification of radioisotopes in the environment. Radionuclides currently present in the environment originate from a variety of natural sources such as fallout from nuclear weapons testing, and in discharges from both nuclear and non-nuclear industries. Natural sources and fallout from nuclear devices provide the main input to terrestrial ecosystems, except for certain radionuclides emanating from nuclear installations. In the late 1950's and early 1960's, during and immediately after the period of most frequent above ground nuclear weapons testing, numerous studies were performed to determine the distribution and movement of fallout radionuclides in air, precipitation, agricultural produce, animals and soils. Around this time the nuclear power industry was developing, and consequently, both the diversity and amount of radioactive species in the environment increased. Currently, the majority of the high level waste from the nuclear industry is stored for ultimate disposal in sites classified as stable, such as deep geological strata. However, as many nuclear facilities are situated in coastal areas, the bulk of low level radioactive waste is discharged to the sea.

Because of both nuclear fallout and discharges from the nuclear industry (including releases from the Chernobyl accident in 1986), certain radionuclides are studied more than others. This is due to either their radio toxicity, increased presence in the environment or ease of entry into the food chain^{1, 2, 3, 4, 5, 6, 7}; a selection of these is presented in Table 1.

Table 1. Environmental radionuclides of specific interest.

Radionuclide	Environmental Location
³H	Milk, crops, groundwater, and precipitation
¹⁴ C	Milk, crops, animals and sea water
³⁵ S	Milk, crops, animals and soil/sediments
⁹⁰ Sr	Milk, crops, animals and soil/sediments
^{134,137} Cs	Milk, crops, animals and soil/sediments
²³⁸ Pu, ^{239,240} Pu, ²⁴¹ Pu, ²⁴¹ Am	Milk, crops, animals and soil/sediments

The separation and isolation of these radionuclides from the complex sample matrices often encountered is presenting researchers with a myriad of problems; however many of these have been eased by the introduction of novel chromatographic separation technology (Eichrom Industries Inc. Darien, Illinois, USA)

By employing this new technology, previously difficult and time consuming radionuclide separations are completed more effectively and efficienctly. In combination with advances in liquid scintillation counting (LSC) technology by PerkinElmer, it is now possible to consider LSC as an alternative screening tool to alpha spectrometry and gas flow proportional counting.

Chromatographic Sample Preparation

A range of products that employ the technique of extraction chromatography to efficiently pre-concentrate and separate radionuclides from a variety of different matrices have recently been introduced by Eichrom. Extraction chromatography combines the power and selectivity of solvent extraction with the ease of use of a chromatographic column. Through careful selection of the extractant, which is bound to the resin support, a material is produced which is highly specific for a particular radionuclide or group of radionuclides. In the majority of cases, either retention or elution of the radionuclide of interest is achieved by modification of the concentration of the acidic eluent used.

Table 2. Compatibility of Ultima Gold cocktails with Eichrom eluents.

Method	Isotope	Emitter	Strip Volume (ml)	Eluent	Recommended Ultima Gold Cocktail
ACS06	234-238 U	α, γ	15	0.02 M HCl	AB/XR/LLT
	²³⁴ Th	β, γ	20	5 M HCl	AB ¹
ACW01	234-238 U	α, γ	20	0.02 M HCl	AB/XR/LLT
ACVVUT	¹³⁴ Th	β, γ	20	6 M HCI	AB¹/LLT¹
	²³⁴⁻²³⁸ U	α, γ	15	0.01 M HCl	AB/XR/LLT
ACW03	²⁴¹ Pu	β	10	0.1 M Ammonium Oxalate	AB/XR
	²⁴¹ Am	α, γ	3 + 20	9 M + 4 M HCl	AB¹/LLT¹
ACW06	234-238 _U	α, γ	15	0.02 M HCl	AB/XR/LLT
ACVVUb	²³⁴ Th	β, γ	15	5 M HCl	AB ¹
OTW01	²¹⁰ Pb	β, γ	20	Water	LLT
SRW01	^{89,90} Sr	β	10	0.05 M HNO ₃	AB/XR
SRS01	^{89,90} Sr	β	10	0.05 M HNO₃	AB/XR
TCS01	⁹⁹ Tc	β	2	TEVA Resin	AB/XR/LLT
TCW01	⁹⁹ Tc	β	2	TEVA Resin	AB/XR/LLT
SRU01	^{89,90} Sr	β	10	0.05 M HNO₃	AB/XR
ACW04	²⁴¹ Am	α, γ	15	2 M HCl	AB¹/LLT¹
	²³⁴⁻²³⁸ U	α, γ	15	0.02 M HCl	AB/XR/LLT
ACU02	²⁴¹ Pu	β	15	3 M HCI-0.25 M Ascorbic Acid	AB/LLT
	²⁴¹ Am	α, γ	3 + 20	9 M + 4 M HCl	AB¹/LLT¹
A.C.W.00	²⁴¹ Pu	β	10	0.1 M Ammonium Oxalate	AB/XR
ACW09	²⁴¹ Am	α, γ	3 + 20	9 M + 4 M HCl	AB¹/LLT¹
ACW07	²⁴¹ Pu	β	10	0.1 M Ammonium Oxalate	AB/XR
H3W1	³H	β	25	Non acidified water sample	LLT
H3VVI	⁶³ Ni	β	15	3 M HNO ₃	AB¹/LLT¹

¹ Indicates limited sample uptake capacity (see Table 3 for further details)

Employing such technology has resulted in an accurate and reproducible sample preparation method for the determination of radionuclides in environmental samples. Eichrom has published methods for radionuclide separations using their chromatography technology and these can be conveniently explained as follows:

Method	Refer to:
ACW, ACS, ACU	Actinides in Water, Soil and Urine
SRW, SRS, SRU	Strontium in Water, Soil and Urine
TCW, TCS	Technetium in Water and Soil
H3W	Tritium in Water
OTW	Other (e.g. Lead in Water)

A summary of these methods together with the recommended PerkinElmer Cocktail for isotopic determination by LSC is presented in Table 2. Ultima Gold cocktails⁹ are recommended for these applications due to the use of diisopropyl naphthalene (DIN) as the solvent base which enhances alpha/beta resolution in LSC⁷. The information presented in Table 2 shows both the eluent used in the final stripping of the radionuclide from the

chromatographic column and the appropriate Ultima Gold cocktail⁹ which will accommodate either all, or at least a sizeable aliquot of the eluent. Table 2 should be used in conjunction with Table 3 which demonstrates the maximum capacity of each of the Ultima Gold cocktails with each of the eluents. It should be remembered that the use of alpha/beta LSC for alpha determination will only provide a gross alpha measurement and is capable of limited alpha-alpha resolution. An example of such an alpha/beta LSC is the PerkinElmer TriCarb 3180TR (comparable with TriCarb B3180 TR/SL) including alpha/beta separation option which uses Time-Resolved Pulse Decay Analysis (TR-PDA)⁷ technology to separate the alpha spectrum from the beta spectrum.

An alternative method to acidic stripping of the radionuclide from the column is to elute with Isopropyl alcohol (IPA). IPA effectively strips the resin coating (containing the radionuclide) and this can be counted with 4π geometry in a suitable Ultima Gold cocktail. The information in both these tables is presented to help researchers investigate the use of LSC as an alternative technology for gross alpha determination.

Table 3. Sample capacity of Ultima Gold cocktails for chromatographic eluents.

Eluent	Strip Volume (ml)	ml Sample/10 ml Ultima Gold AB @ 20 °C	ml Sample/10 ml Ultima Gold LLT @ 20 °C	ml Sample/10 ml Ultima Gold XR @ 20 °C
0,01 M HCl	15	10.0	8.0	10.0
0,02 M HCl	15-20	9.0	7.0	10.0
2,0 M HCl	15	3.5	3.5	1.0
5,0 M HCl	15	2.0	1.5	<0.5
6,0 M HCl	20	1.0	1.5	<0.5
4,65 M HCl (9 M + 4 M Mixture)	3 + 20	1.5	2.0	<0.5
9,0 M HCl	20	1.0	1.0	<0.25
3 M HCl/0,25 M Ascorbic acid	15	2.0	2.0	0.5
0,05 M HNO ₃	10	8.0	7.0	9.0
3,0 M HNO ₃	15	2.0	2.25	1.0
0,02 M HNO ₃ /0,02 M HF	10	8.0	10.0	10.0
0,1 M Ammonium oxalate	10	8.0	6.0	9.0
Water	25	10.0	10.0	10.0

Aqueous Sample Preparation

Many of the radioactive species of interest to low level researchers are present in an aqueous medium, usually water. Therefore, any suitable LSC cocktail must not only have a high capacity for water but also be compatible with water from a variety of different sources. These include distilled, deionized, tap, rain, river and even sea water. In addition to high sample capacity, other preferred requirements for liquid scintillation counting include a very low background contribution and high counting efficiency. Ideally the LSC cocktail should also be based on the high flash point, safer solvent DIN. Ultima Gold LLT is

such a cocktail and is primarily designed for the low level Tritium monitoring and research sectors. Additionally, Ultima Gold LLT has other unique performance characteristics that set it apart from currently available cocktails. Ultima Gold LLT meets additional requirements for a low level counting cocktail such as long term stability and sub-ambient temperature stability, and it can accept the important mineral acid species normally encountered in alpha/beta counting applications. A selection of the more important properties of Ultima Gold LLT is illustrated in Tables 4 and 5.

Table 4. Suitability of Ultima Gold LLT for low level tritium measurements.

Water/Cocktail Ratio (ml)	Cocktail	³H Efficiency (0,4 – 4,5 keV)	Background (CPM)	E²/B	E ² V ² /B	MDA (Bq/l)
8:12	Ultima Gold LLT	24.6	1.15	526	33680	1.22
10:10	Ultima Gold LLT	21.2	1.11	405	40490	1.11
11:9	Ultima Gold LLT	18.1	0.95	345	41730	1.06

Table 5. Sample capacity of Ultima Gold LLT cocktail for different acids.

Temperature (°C)	1 M HCl (ml)	2 M HCl (ml)	1 M HNO ₃ (ml)	2 M HNO ₃ (ml)	1 M H ₂ SO ₄ (ml)	2 M H ₂ SO ₄ (ml)	1 M H ₃ PO ₄ (ml)	2 M H ₃ PO ₄ (ml)
14	4.0	2.0	3.0	2.25	5.5	3.5	4.5	4.0
16	4.0	2.5	3.5	2.25	6.5	4.0	5.0	4.0
18	4.0	2.5	3.5	2.25	7.0	4.0	7.0	4.0
20	5.0	3.0	3.5	2.5	7.0	4.0	4.0	4.0

Table 4 shows some of the properties of Ultima Gold LLT measured in Low Level Mode in a TriCarb 2770 TR/SL (comparable with TriCarb 3180 TR/SL) comparable with TriCarb B3180 TR/SL) at 15 °C. All samples were prepared in duplicates in polyethylene vials. The measurement time for the determination of the background was 500 minutes. The minimum detectable activity (MDA) was calculated using the formula from Currie⁸.

Table 5 indicates that Ultima Gold LLT is capable to take up amounts of acids generally used for environmental samples. Ultima Gold LLT also shows a high sample capacity for urine samples, and therefore is ideally suited for bioassays with ³H samples in urine. As a quick guide Table 6 shows the most

important environmental radionuclides from nuclear power plants and the nuclear industry.

Conclusion

Environmental sample preparation encompasses a wide variety of techniques, including extraction chromatography, adic extraction, ashing and solvent extraction, and chemical separation. Advances in liquid scintillation technology, together with new and emerging sample preparation techniques, now enable researchers to consider LSC as an alternative environmental sample radionuclide counting method, or as a potentially useful screening tool.

Table 6. The main radionuclides originating from nuclear devices and the nuclear industry.

Element	Radionuclide	Half-life	Emitter	Energy (MeV)	Sources
Hydrogen	³H	12.3 y	β	0.02	Fallout, nuclear industry
Carbon	¹⁴ C	5730 y	β	0.16	Fallout, nuclear industry
Phosphorus	³² P	14.3 d	β	1.71	Fallout, nuclear industry
Sulphur	³⁵ S	88 d	β	0.17	Nuclear industry
Argon	⁴¹ Ar	1.83 h	β	1.20; 2.49 1.29	Nuclear industry
Calcium	⁴⁵ Ca	165 d	β	0.26	Nuclear industry
Chromium	⁵¹ Cr	27.8 d	γ EC	0.32 0.75	Nuclear industry
Manganese	⁵⁴ Mn	303 d	γ	0.84	Fallout, nuclear industry
	⁵⁵ Fe	2.6 y	EC	0.23	Fallout, nuclear industry
Iron	⁵⁹ Fe	45.1 d	β	0.27; 0.47 0.14-1.3	Nuclear industry
Cobalt	⁵⁸ Co	71.3 d	β γ EC	0.47 0.81; 0.86 2.31	Nuclear industry
	⁶⁰ Co	5.3 y	β	0.32; 1.49 1.17; 1.33	Fallout, Nuclear industry
Nickel	⁶³ Ni	92 y	β	0.07	Nuclear industry
Zinc	⁶⁵ Zn	244 d	β γ EC	0.33 1.11 1.11	Nuclear industry
Arsenic	⁷⁶ As	1.1 d	β	0.35-2.96 0.51-2.66	Nuclear industry
Krypton	⁸⁵ Kr	10.8 y	β	0.67 0.14	Fallout, Nuclear industry
Strontium	⁸⁹ Sr	52 d	β	1.46	Fallout, Nuclear industry
SHOHLIUH	⁹⁰ Sr	28.1 y	β	0.55	Fallout, Nuclear industry

Table 6. Continued

Element	Radionuclide	Half-life	Emitter	Energy (MeV)	Sources
	90γ	2.67 d	β	2.27	Nuclear industry
Yttrium	91γ	58.8 d	β γ	0.33; 1.55 1.21	Nuclear industry
Zirconium	⁹⁵ Zr	65 d	β γ	0.36-1.13 0.24; 0.72	Fallout, Nuclear industry
Niobium	⁹⁵ Nb	35.1 d	β γ	0.16 0.77	Fallout, Nuclear industry
Technetium	⁹⁹ Tc	2.12·10⁵ y	β	0.29	Fallout, Nuclear industry
Ruthenium	¹⁰³ Ru	39.6 d	β γ	0.226 0.04-0.61	Fallout, Nuclear industry
	¹⁰⁶ Ru	367 d	β	0.04 0.51-2.64	Nuclear industry
Silver	^{110m} Ag	253 d	β γ	0.09; 0.53 0.66; 0.82	Nuclear industry
Antimony	¹²⁴ Sb	60.3 d	β γ	0.06-2.32 0.04-2.3	Nuclear industry
Antimony	¹²⁵ Sb	2.7 y	β γ	0.10-0.62 0.04-0.67	Fallout, Nuclear industry
	^{125m} Te	58 d	γ	0.04; 0.11	Nuclear industry
Tellurium	¹³² Te	3.25 d	β γ	0.22 0.05-0.23	Nuclear industry
Iodine	129	1.7·10 ⁷ y	β	0.19 0.04	Fallout, Nuclear industry
iodine.	131	8.07 d	β	0.26-0.81 0.08-0.72	Fallout, Nuclear industry
V	^{131m} Xe	11.8 d	γ	0.16	Nuclear industry
Xenon	¹³³ Xe	5.27 d	β γ	0.27; 0.35 0.08; 0.38	Nuclear industry
	¹³⁴ Cs	2.05 y	β	0.09; 0.41 0.48-1.4	Nuclear industry
Cesium	¹³⁶ Cs	13 d	β	0.34; 0.56 0.07; 1.24	Fallout
	¹³⁷ Cs	30.2 y	β γ	0.51; 1.18 0.66	Fallout, Nuclear industry
Barium	¹⁴⁰ Ba	12.8 d	β γ	0.47-1.02 0.14-0.54	Fallout
Lanthanum	¹⁴⁰ La	1.67 d	β γ	1.25-2.17 0.11-2.55	Fallout, Nuclear industry
Cerium	¹⁴¹ Ce	33 d	β γ	0.44; 0.58 0.15	Fallout, Nuclear industry
Cellulli	¹⁴⁴ Ce	285 d	β γ	0.18-0.31 0.03-0.13	Fallout, Nuclear industry
Neodymium	¹⁴⁷ Nd	11.1 d	β γ	0.38; 0.82 0.09-0.69	Fallout
Promethium	¹⁴⁷ Pm	2.5 y	β	0.23	Nuclear industry
Europium	¹⁵⁴ Eu	16 y	β	0.27-1.86 0.06-1.6	Nuclear industry
	¹⁵⁵ Eu	1.81 y	β	0.10-0.25 0.04-0.11	Nuclear industry
Polonium	²¹⁰ Po	138.4 d	α γ	5.30 0.80	Nuclear industry
Thorium	²³⁴ Th	24.1 d	β γ	0.10; 0.19 0.03-0.09	Nuclear industry
	²³⁴ U	2.47·10⁵ y	α γ	4.60; 4.72 0.05-0.58	Nuclear industry
Uranium	²³⁵ U	7.1·10 ⁸ y	α γ	4.16-4.60 0.07-0.37	Nuclear industry
Oranium	²³⁶ U	2.39·10 ⁷ y	α γ	4.33; 4.44 0.05	Nuclear industry
	²³⁸ U	4.51·10 ⁹ y	$lpha$ γ	4.14; 4.15 0.05	Nuclear industry

Table 6. Continued

Element	Radionuclide	Half-life	Emitter	Energy (MeV)	Sources
Neptunium	²³⁷ Np	2.14·10 ⁶ y	α γ	4.40-4.87 0.02-0.24	Nuclear industry
	²³⁸ Pu	86 y	α γ	5.36; 5.46; 5.50 0.04	Fallout, nuclear industry
	²³⁹ Pu	2.44·10⁴ y	α	5.01-5.16 0.04-0.77	Fallout, nuclear industry
Plutonium	²⁴⁰ Pu	6580 y	α	5.02; 5.12; 5.17 0.05; 0.10	Fallout, nuclear industry
	²⁴¹ Pu	13.2 y	α β	4.80-5.05 0.02	Fallout, nuclear industry
	²⁴² Pu	3.79·10⁵ y	α	4.86; 4.90	Nuclear industry
Americium	²⁴¹ Am	458 y	α	5.39-5.55 0.03-0.06	Fallout, nuclear industry
Curium	²⁴² Cm	163 d	α	5.97-6.11 0.04	Fallout, nuclear industry

References

- 1. Ministry of Agriculture, Fisheries and Food. *Radionuclides in Foods, Food Surveillance,* Paper No. 43 (1994), ISBN 0 11 242975 0.
- 2. Ministry of Agriculture, Fisheries and Food. *Directorate of Fisheries Research, Aquatic Environment Monitoring Report,* No. 42 (1994).
- 3. K. L. Bocock; *Radionuclides in Terrestial Ecosystems*, 1981, ISBN 0904282422.
- 4. National Radiological Protection Board. *Radiation Exposure* of the UK Population, 1993, Review (NRPB-R263), HMSO, ISBN 0 85951 364 5.
- Her Majesty's Inspectorate of Pollution. Monitoring Programme

 Radioactive Substances, Report for 1993, HMIP, Cameron
 House, Lancaster LA1 4XO.

- Ministry of Agriculture, Fisheries and Food, Terrestial Radioactivity Monitoring Programme (TRAMP), Report for 1993, Radioactivity food and agricultural products in England and Wales (TRAMP/8).
- C. J. Passo Jr., G. T. Cook; Handbook of Environmental Liquid Scintillation Spectrometry 1994, Packard Instrument Company, Meriden, CT 06450 USA.
- 8. L. A. Currie; Limits of qualitative detection and quantitative determination. *Analytical Chemistry*, 40, 586-593 (1968).
- PerkinElmer(Germany) GmbH, 63110 Rodgau-Jügesheim, LSC Application Note, Cocktails for Liquid Scintillation Counting, October 2004.

The application note information enclosed is used to illustrate the technique and may not represent the latest instrument, reagents and cocktails. Customers should validate the technique in their laboratory. Contact Customer Care at www.perkinelmer.com/contact to find the current PerkinElmer instruments, reagents and cocktails.

PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com

